Plasma ideal response to a non-axisymmetric boundary perturbation

1. Motivation and Summary

- ► Main goal of ideal MHD: discovery of stable, magnetically confined plasma configurations [1].
- ▶ 2D MHD equilibrium problem is well posed (Grad-Shafranov equation).
- ▶ 3D MHD equilibrium problem is still today an outstanding issue.
- ▶ Ideal MHD predicts singular currents forming at rational surfaces in 3D equilibria [2]:
- \blacktriangleright A Pfirsch-Schlüter 1/x-current, which arises as a result of finite pressure gradient.
- A $\delta(x)$ -current which is necessary to prevent the formation of islands.
- Singular currents are critical for the ideal and resistive stability of 3D MHD equilibria [3-5].

- ► A physically valid equilibrium must have finite integrated current densities:
- ullet δ -current densities are always integrable.
- ▶ 1/x pressure-driven current densities give divergent currents.
- ▶ Historical conclusion: 3D equilibria have either fractal [6] or stepped [7] pressure profiles.
- ▶ QUESTION: are there 3D MHD equilibria with nested surfaces and smooth pressure profiles?
- ► ANSWER: we present a new class of 3D MHD equilibria with
- (1) nested surfaces, arbitrary 3D geometry, and arbitrary smooth pressure
- (2) agreement between linear and nonlinear equilibrium calculations in the appropriate limit,
- (3) new predictions about the penetration of resonant boundary perturbations

J. Loizu^{1,2}, S. Hudson², A. Bhattacharjee², S. Lazerson² and P. Helander¹

¹ Max-Planck-Institut für Plasmaphysik, Euratom Association, D-17491 Greifswald, Germany ² Princeton Plasma Physics Laboratory, Princeton New Jersey, USA

O) PPL

2. Exact computation of singular currents

- ► Multiregion Relaxed MHD bridges Taylor's theory with ideal MHD.
- ► MRxMHD converges to ideal MHD for $N \to \infty$ [8].
- ► Stepped-pressure & singular currents are possible.
- ▶ The SPEC code [9] is a numerical implementation of MRxMHD.

- ► SPEC used in **slab torus** to study singular currents.
- First numerical proof of their mutual existence [10].
- ► Exact verification against Hahm-Kulsrud theory [11].

- ► Conclusion: locally infinite shear at the rational surfaces is required in order to have well-defined solutions.
- ► Corollary: consider 3D MHD equilibria with discontinuous transform (current sheet) across resonant surfaces. joaquim.loizu@ipp.mpg.de EPS conference, Lisbon, Portugal, June 2015

4. Cylindrical 3D MHD equilibria with current sheets

Screw pinch axisymmetric equilibrium with $p(r) \equiv 0$ and

where Δ_t manifests in the form of a "DC" current sheet.

Linear response to boundary perturbation $\xi_a \cos(m\theta + kz)$:

$$rac{d}{dr}\left(frac{d\xi}{dr}
ight)-g\xi=0$$
 (Newcomb's equation)

where f(r) and g(r) depend on the equilibrium.

▶ Radial displacement, $\xi(r)$, gives overlap of surfaces unless

$$|rac{d\xi}{dr}|<1$$
 (sine qua non condition)

► Analytical expression for $|d\xi/dr|_{r=r_s}$

$$\xi_{\mathcal{S}}' = 2 t_{\mathcal{S}}' rac{\xi_{\mathcal{S}}}{\Delta_t}$$

provides a minimum current sheet

$$\Delta t > \Delta t_{ extit{min}} = 2 t_{ extit{s}}' \xi_{ extit{s}} pprox t_{ extit{s}}' \xi_{ extit{a}}$$

as the *sine qua non* condition for the existence of equilibria.

- Confirmed by nonlinear simulations.
- ► Conclusions: (1) Boundary perturbation penetrates all the way into the centre of a tokamak, even within ideal MHD. (2) 3D ideal equilibria exist as long as $\Delta t > \Delta t_{min}$, and may be computed with arbitrary smooth pressure.

7. References

- [1] J. P. Freidberg, *Ideal MHD*, Cambridge University Press (2014) [2] P. Helander et al., Rep. Prog. in Phys. 77, 087001 (2014)
- [3] M. N. Rosenbluth et al., Phys. Fluids 16, 1874 (1973) [4] F. L. Waelbroeck, Phys Fluids B 1(12) (1989)

[6] H. Grad, Phys. Fluids 10(1) (1967)

- [5] R. J. Hastie, Astrophysics and Space Science, 256 (1998)
- [10] J. Loizu et al., Phys. Plasmas 22, 022501 (2015)

[8] G. R. Dennis et al., Phys. Plasmas 20, 032509 (2013)

[9] S. R. Hudson *et al.*, Phys. Plasmas 19, 112502 (2012)

[7] O. Bruno and P. Laurence, Commun. Pur. Appl. Math. 49(7) (1996)

- [11] T. S. Hahm *et al.*, Phys. Fluids 28, 2412 (1985) [12] J. Loizu et al., submitted to Phys. Plasmas (2015)